
Decentralized Distributed Machine Learning through Adapted Data Parallelism

Amruth Nare

University of Maryland

Robert H. Smith School of Business

Problem Statement
Machine Learning is quickly becoming one of the biggest fields in the world of computer

science. However not everybody has access to powerful CPUs to run their complex machine
learning algorithms on. The advent of distributed computing proves to be a possible solution that
would democratize machine learning, allowing everyone to run algorithms regardless of their
computer's specifications. Though the field of distributed computing is quickly growing, there is
yet to be a model that accurately and efficiently runs a machine learning algorithm on multiple
nodes collaboratively.

Background
Currently in order to address the necessity of powerful CPUs for machine learning

algorithms, researchers have proposed various distributed computing solutions. In order to
consider a protocol or system an adequate solution to distributed machine learning, I designated
a few requirements to be satisfied.
Requirements

1) Fault Tolerance
2) Data Privacy
3) High Accuracy
4) Efficiency

Fault tolerance is the ability of the algorithm to work regardless of missing nodes.
Research on distributed machine learning proves to have much significance in the future as
distributed computation democratizes machine learning. This would allow anyone to be able to
create their own machine learning algorithms.

Data Parallelism & Parameter Servers
Initially proposed by researchers at Carnegie Mellon University, data parallelism works

by splitting the training data for the machine learning model in mini-batches to perform
distributed machine learning(Li, 2014). These batches are then distributed among the
nodes(external computers), each individual node will calculate the accompanying gradients for
their dataset. Gradients are the values in a neural network that optimize the accuracy and
minimize loss. These respective gradients are then passed onto an overruling parameter server,
which calculates the weighted average of the gradients and passes the updated model back to the
worker nodes (Illustrated Below).

With the concept of parameter servers there is the advantage of improved accuracy for the
machine learning model as each node is performing the learning individually. However, this
specific design fails to pass the requirement of fault tolerance as if one of the worker nodes
wasn't present the parameter server would not be able to conduct the gradient calculations.
Another inherent problem with parameter servers is that it introduces additional latency as each
worker has to pass the data to the parameter server and wait for its response. Also parameter
servers are inherently centralized so it is not reasonable on a larger scale involving more worker
nodes.

Model Parallelism
In model parallelism rather than splitting up the data into batches, the machine learning

model itself is split into parts and distributed among different systems. So rather than each
system running the model synchronously, model parallelism runs serially as each part of the
machine learning model depends on the prior results. With model parallelism a neural network’s
layers would be split across various different nodes and the last node would have the model's
parameters.

Contrary to its name, model parallelism doesn't truly run in parallel but rather in a serial
pattern. In a study by researchers at Taiwan University, they constructed a deep neural network
that implemented model parallelism(Chen, 2019). However the researchers noticed that the
neural network had poor efficiency due to its back propagation feature. Back propagation is the
process of propagating the calculated cost of the neural network back through its prior layers to
recalculate gradients. Each time the model used back propagation its efficiency sunk, as the
layers were spread across various GPUs(nodes) which increased latency. The researchers also
noted that model parallelism is not fault tolerant as each GPU is required to run a specific layer
so if one was missing the machine learning model would not work. Since model parallelism is
inherently inefficient and not fault tolerant it is not a viable method of distributed machine
learning.

Inter-Batch Pipelining
In order to combat the problems that arise from back propagation, the concept of

inter-batch pipelining was developed by researchers from Stanford University(Narayanan, 2019).
Inter-batch pipelining is the process of scheduling forward and backward passes of different
mini-batches concurrently through different workers. This way no worker is sitting idle after
completing the training for their specific minibatch. However this model developed by the
researchers was meant for data parallelism and hasn't been developed for model parallelism so it
still isn't an option.

Materials
The research project required a variety of materials that are essential to the development
environment as well as the testing of the program. In order to perform the programming and host
a python script, a linux machine from Amazon Web Services(AWS) was implemented through
their workspaces product. The language the program was written in was Python 3.7 which was
used in conjunction with TensorFlow 2 for the machine learning functionality. Along with
TensorFlow the research project used the python package Horovod by uber which is the library
responsible for the distributed data parallelism. In order to connect various nodes together
OpenMPI an open source library was used to transfer data between nodes. However any
implementation of MPI (Message Passage Interface) is acceptable for the program. For the
various nodes used in the project itself, DLAMI EC2 instances from AWS were implemented.
DLAMI instances are deep learning amazon machine images which are servers which a machine
learning environment already set up for development. For the actual machine learning models
that were tested on the network, the MNIST database from TensorFlow was used.

Methods
To conduct decentralized distributed machine learning various algorithms and methods were
used to connect nodes and run the script.

Setting up MPICluter
Prior to the start of any development, the nodes had to be set up to run the machine learning
models on. All the nodes(servers) that were used throughout the research project were DLAMI
EC2 instances from AWS. These instances were initialized through SSH and their private IP’s
were documented. In order to improve efficiency all instances also downloaded a local version of
the MNIST dataset to take the stress of the algorithm itself.

Horovod Program & Convolutional Neural Network
The program to conduct the actual machine learning used the Horovod library to conduct the
adapted data parallelism. The initial machine learning model used was a convolutional neural
network(CNN) taken from TensorFlow’s github repository. Along with raw code required for the
ML model, Horovod also requires a hosts file for multi-node GPU training. The private IP’s from
the EC2 instances were entered into the Horovod hosts files. Some aspects of the CNN were
changed in order to standardize results against a single node running a CNN. The CNN’s
hyperparameters had to be changed as the learning rate of the neural network was not
proportional to the amount of data it was processing. For the research project 2 worker nodes
were used to conduct the actual machine learning processing so the data would be split into two
equal mini batches. To accommodate for the smaller amount of data, the learning rate of the
worker nodes was proportionally halved as the learning rate is dependent on the confidence in

each adjustment to the gradients which would be reduced due to less data. This proportionality is
outlined in this research paper by Facebook(Goyal, 2018).

Adapted Data Parallelism
The program itself utilized the concept of data parallelism in order to conduct the actual
distributed machine learning. Data parallelism is the process of dividing the training data into
mini batches and having each worker node run their machine learning model on the smaller set
of data. After these models are done running a parameter server will aggregate the gradients and
establish a fully trained machine learning model by taking a weighted sum of the gradients.
However in this research project, a different form of data parallelism was used that decentralizes
the process so that all nodes will have a fully trained model. This adapted data parallelism
leverages OpenMPI technology and the Baidu Ring All-Reduce algorithm(Gibiansky, 2018). The
OpenMPI library was used to communicate between nodes directly rather than through an
overruling parameter server. The ring all-reduce algorithm was implemented by having each
node transfer their gradients [node-1] in a ring pattern and performa reduction operation. By the
end each node will have a reduced copy of all the gradients. Then a simple weighted mean is
taken by every node in the ring which results in the gradients to the trained machine learning
model.

Results

Local CNN trained with 12 epochs 2 Processes on GPU

CNN Trained on 4 Nodes CNN Trained on 3 Nodes with .003 LR

Theoretical Cores Time for
12 epochs

2 482

2 473

6 125

6 131

8 67

8 62

Discussion
Throughout the testing of the distributed learning protocol, I used the MNIST database provided
by the Keras framework. The MNIST database contains images of the numbers 1-9 so the neural
network can be trained to identify handwritten digits. For the majority of the testing a 4 layered
deep neural network that implemented the HVD-Adam optimizer was used. The testing was done
for 3 different iterations of the protocol: 2 local processes on GPU, 4 Multi-Node, and 3
Multi-Node. For each of the different tests I adjusted the learning rate based on the amount of
processes as more processes results in smaller batches of test data.

Each of the tests has their loss functions graphed over the training epochs and were used to
verify whether there was any difference in accuracy between single and multi-node neural
network training. While the neural network run on the 4 node network had the lowest loss, it
wasn't significant enough to warrant a difference from the local training. However there was a

clear difference in time to compute when using the multi-node network. Since the multiple node
network has multiple GPU’s that are each processing mini-batches of data they essentially had
more cores. The data reflected this claim because as the number of theoretical cores for
processing increased the time to complete training decreased. The improvement in efficiency was
approximately 677% between the local node and the four node process however there was only a
400% increase in the computing power. This can be explained by the Horovod technologies
framework that uses OpenMPI to interact between nodes. Since OpenMPI only distributed
minibatches of the dataset each respective node is performing less computation than the local
network so it will be more efficient.

Citations

Gibiansky, A. (2018). Andrew Gibiansky :: Math → [Code]. Retrieved November 07, 2020,
from https://andrew.gibiansky.com/blog/machine-learning/baidu-allreduce/

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., . . . He, K. (2018,
April 30). Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour. Retrieved November
07, 2020, from https://arxiv.org/abs/1706.02677

Weng, J., Weng, J., Zhang, J., Li, M., Zhang, Y., & Luo, W. (2019). DeepChain: Auditable and

Privacy-Preserving Deep Learning with Blockchain-based Incentive. IEEE Transactions on

Dependable and Secure Computing, 1-1. doi:10.1109/tdsc.2019.2952332

Chen, Xuhui & Ji, Jinlong & Luo, Changqing & Liao, Weixian & Li, Pan. (2018). -1178-1187.

10.1109/BigData.2018.8622598.

Garcia, E. (2019, August 10). Visual intuition on ring-Allreduce for distributed Deep Learning.

Retrieved June 16, 2020, from

https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d

1f34b4911da

Sergeev, A. (2019, April 08). Meet Horovod: Uber's Open Source Distributed Deep Learning

Framework for TensorFlow. Retrieved June 16, 2020, from https://eng.uber.com/horovod/

Sundaram, Narayanan, et al. “Streaming Similarity Search over One Billion Tweets Using

Parallel Locality-Sensitive Hashing.” Proceedings of the VLDB Endowment, vol. 6, no. 14,

2013, pp. 1930–1941., doi:10.14778/2556549.2556574.

Sgantzos, K., & Grigg, I.. (n.d.). Artificial Intelligence Implementations on the, fi11080170.

McConaghy, T., & al, E. (n.d.). “How Blockchains Could Transform Artificial Intelligence.”

Dataconomy, 21 Dec. Retrieved May 3, 2020,

https://andrew.gibiansky.com/blog/machine-learning/baidu-allreduce/
https://arxiv.org/abs/1706.02677

Ibanez, T. (n.d.). “LearningChain.” Devpost, devpost.com/software/learningchain. Retrieved

May 3, 2020,

Baldominos, Alejandro, and Yago Saez. “Coin.AI: A Proof-of-Useful-Work Scheme for

Blockchain-Based Distributed Deep Learning.” Entropy, vol. 21, no. 8, 2019, p. 723.,

doi:10.3390/e21080723.

Ibanez, Thomas. “LearningChain.” Devpost, devpost.com/software/learningchain.

McConaghy, Trent, et al. “How Blockchains Could Transform Artificial Intelligence.”

Dataconomy, 21 Dec. 2016, dataconomy.com/2016/12/blockchains-for-artificial-intelligence/.

Sgantzos, Konstantinos, and Ian Grigg. “Artificial Intelligence Implementations on the

Blockchain. Use Cases and Future Applications.” Future Internet, vol. 11, no. 8, 2019, p. 170.,

doi:10.3390/fi11080170.

Engdahl, S. (2008). Blogs. Retrieved June 16, 2020, from

https://aws.amazon.com/blogs/machine-learning/launching-tensorflow-distributed-training-easily

-with-horovod-or-parameter-servers-in-amazon-sagemaker/

Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V., Devanur, N., Ganger, G., . . .

University of Calgary. (2019, October 01). PipeDream: Generalized pipeline parallelism for

DNN training. Retrieved June 16, 2020, from https://dl.acm.org/doi/10.1145/3341301.3359646

Li, M., Andersen, D., Smola, A., Google, A., Ahmed, A., Google, V., . . . University of

Michigan,University of Washington. (2014, October 01). Scaling distributed machine learning

with the parameter server. Retrieved June 15, 2020, from

https://dl.acm.org/doi/10.5555/2685048.2685095

Chen, Chi-Chung, Yang, Chia-Lin, Cheng, & Hsiang-Yun. (2019, October 28). Efficient and

Robust Parallel DNN Training through Model Parallelism on Multi-GPU Platform. Retrieved

June 15, 2020, from https://arxiv.org/abs/1809.02839

https://dl.acm.org/doi/10.1145/3341301.3359646
https://dl.acm.org/doi/10.5555/2685048.2685095
https://arxiv.org/abs/1809.02839

